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ON THE STABILITY OF THE STATIONARY ROTATIONS OF A 
SYMMETRIC RIGID BODY IN AN ALTERNATING MAGNETIC FIELD* 

YU.A. KONYAYEVand YU.G. MARTYNENKO 

The stability of the stationary rotations of a conducting axisymmetric 
rigid body with a fixed centre of mass in a magnetic field is studied. 
The field is assumed to be homogeneous and of fixed direction, and to 
vary in strength harmonically. The principal axes of polarization are 
assumed to be the same as the principal axes of inertia of the body. 
The problem is analysed by using a small parameter, proportional to the 
square of the amplitude of the magnetic field and inversely proportional 
to the kinetic moment of the body, by the method of special matrix 
transformations /l, 2/. As distinct from the well-known method, see 

e.g., /3/, the present method retains its efficiency in the quite general 
case, notably, when the spectrum of the limit matrix has identically 
multiple points, so that any resonance situations can be studied. The 
conditions for stability of the stationary rotations of the body are 
obtained, and a domain of stability is found in parameter space when there 
is a resonance relation between the frequencies of the magnetic field 
and the nutational oscillations of the body. 

1. Formulation of the problem. We consider a conducting symmetric rigid body,having 
a fixed point 0, the same as the centre of mass of the body. Let O&&&, 0x1x,x, be right 
orthogonal trihedrons with origin at the point 0. The Ei axes have a fixed orientation in 
space, the xi axes are directed along the principal axes of inertia of the body, while the x3 
axis coincides with the axis of symmetry of the body. 

We assume that the magnetic field is uniform and that the projections of its field- 
strength vector HE = HE(~) onto the Ei axes are 

HE, = H,, = 0, H, = H, sin wt. (1.1) 
Here, H, = const is the modulus of the field-strength vector, and o is the fieldfrequency. 
We assume that the depth of field penetration into the conducting material is muchgreater 

then the size of the body (i.e., the frequency 61 in (1.1) is not very high), and we take the 
permeability p of the body to be unity. Then the principal term of the asymptotic expansion 
of the moment of the forces acting on the body in the uniform field is /4/ 

M 1 H$A"F (IHE, Q,l + He') (1.2) 

Here, B, is the instantaneous angular velocity vector, A" is the polarization tensor in 
the Xi axes, r = II Yijllv Yij is the cosine of the angle between the Eiand Xj axes, and T 
denotes transposition; the dot denotes differentation with respect to time. 

We assume that the principal axes ofthebody inertia tensor are at the same time the 
principal axes of the polarization tensor, i.e., in (1.2) we have A' = diag(a,,cc,,a,), r*i are 
the polarization coefficients with respect to the xi axes, while a, = c2, ai = const. 

Under these assumptions, the equations of motion of the body about the fixed point 0 in 
the field (1.1) under the action of the moment of forces (1.2) are 

(1.3) 

Here,Li is the angular momentum about the Ei axis, Yi G Yi3 is the projection onto the 
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gi axis of the unit vector y, directed along the axis of symmetry of the body, x3, I, are the 
moments of inertia about the axes Xi(I1 = I%), LG = L,y, -I- Lzra f L,y, is the angular momentum 
about the xaaxis, and (1 2 3) denotes clockwise permutation of the subscripts. 

System (1.3) has the particular solution 

L, = L, = 0, L, = L = con&, y1 = y2 = 0, y3 = 1 (1.4) 

It corresponds to stationary rotation about the axis of symmetry x $*the same as the direction 
along which the field-strength vector (1.1) varies. On linearizing system (1.3) in the 
neighbourhood of the singular point (1.4) and retaining the same notation for the deviations 
of the variables L,, L,,y,,y, from their stationary values (1.4), we arrive at a system of 
linear differential equations with periodic coefficients 

(1.5) 

To analyse system (1.5) it is best to introduce the complex-valued functions y = -& -i-iy,, 
I = (L, + iL,)il, of the real variable t and to make the replacement y = 2, + xz,E = Qxz. As a. 
result, we reduce system (1.5) to the form 

r(t) = -_xsZ sina ot + V,io (E - 1) sin 2wt 

p(t)=52 sirPot f r(t), x=1,/1,, E = a&, a = L/I, 

Here,6t is the frequency of the nutational oscillations of the body. 
In actual systems the dimensionless parameter E is small compared to unity, so that we 

shall consider the stability of the trivial solution of system (1.6) for sufficiently small E. 

2. The method of special matrix transformations /l, 21. We consider in R" the 
system of linear differential equations with a small parameter E and T-periodic coefficients 

x' = A (t, e)x, x = co1 (x1, x,, . . -9 x,) (2.1) 

A (6 E) = *; Ax (t) 8’ (]ej<e& A, = const 

of which a particular case is system (1.6). 
For system (2.1) we have: 

Theorem 1. Let the spectrum (hojjlR of the constant matrix A, satisfy the conditions 

h,j - .& # i2nqiT (2.2) 
(j # k; j, k = 1, 2, . . ., n; q = 0, ztl, &2, . . .) 

Then, fox sufficiently small sr there is a non-degenerate T-periodic trahsformation (E 
is the identity matrix) 

x = s (t, E)y = 1E + E&(t) -I- . . . + ENSN @)I y 

which reduces system (2.1) tothe form 

y’ = B @I 8) YP B (t, E) = kgo Bs (t) Ek (2.4) 

where, for any N, the matrices BJ= A, (j<N) are constant and diagonal, 

Proof * By (2.21, it can be assumed without loss of generality that the matrix A,, in 
(2.1) is diagonal, A,= iz,. The replacement (2.3) reduces Eq.(2.1) to Eq.(2.4), in which B(t, 
E) = S-' (AS - s’). Consequently, the unknown matrix S&E) satisfies the equation 

S' = AS - SB (2.5) 

Given any square matrix A =I{ fjxl[, we introduce the notation Acd) = diag {Q, . . ., aan), 
_x$W) = A _ A(d). After substituting the expansions in powers of e of matrices A,B,S, into 
Eq.(2.5) and comparing coefficients of like powers of e, we arrive at the sequence of linear 
differential matrix equations 

Sj'=Iz,Sj- SjA, + Pj(t)-An, (j= 1,2,...,N) wf.2 
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Here, 

We put 

T I 

Aj=+SPjd'(t)df, S(P’(t)=S[p:d’(t)_~~jjldt 
0 0 

The diagonal terms of the matrix S,(t) are thus defined. 
The equation for the off-diagonal terms 

SjW)' = .i\.OS,W) _ Si(lW &, + pjW) (t) 

spolits into n2- n scalar equations 

+i' = /%#k, -+ &I f% fikf = &,,k - il,l (k # I) 

each of which has the T-periodic solution 

(2.7) 

(2.8) 

By successively evaluating by means of (2.7) and (2.9) the diagonal matrices izj and the 
elements ski(t) of the T-periodic matrices Sj(t), we can find transformation (2.3) and system 
(2.41, which it was required to prove. 

Now assume that the spectrum of the matrix A@ has multiple points and that 

I.,, - hOl, # i2nqiT 
(j + k; j, k = 1, 2, . . ., p; 1 < p < n; q = 0, *1, f2, . . .) (2.10) 

As above, we shall assume that ~4, has been reduced to the Jordan form, i.e., 

do = Jo = diag {JoI, . . ., Jo,); Jo, = h,jE + MO, 
(i = 1, 2, . . . P), 

where MO) are known nilpotent matrices. Introducing fractional powers of e = elm(, = LC'M mj; 
j 

mj = dimJ,j) by means of the replacement 

x=N(eI)y; N(~~)=diag(l,e;T!~', . . ..e. 
(mrlmim, 

, **., 1, &y@P, . . .( E p -lwmp) P (2.11) 

we obtain the system (E are identity matrices of suitable dimensions) 

Y' = B (t, E) y; B, = A,, = diag {Aor, . . ., A,,} A,, == h,jE (j = 1, 2, . . ., p). 

Noting the structure of the matrix J,,we denote the block diagonal part of any square 
matrix A =IIAl,/j by dcd) = diag{&,,..., App) and accordingly A("@==A - Atd), where dimAll = 
dim J,J . By using the T-periodic non-degenerate replacement for sufficiently small s, > 0 

Y= s(t, E,)v; s (t, s,)= h' + h$ & (t)srk (2.12) 

we can obtain the system 

v’ = P (t, E) v; P (t, E) = j. Pi, (tf Elk (2.13) 

where p!(t) = Cjcd) (j = 1, 2, . , ., N) are constant block diagonal matrices. Each matrix s,(t) of 
(2.12) then satisfies the differential equation 

s~=QI(t)-Cjd)+AgS~d)--Sl"d)Ag (2.14) 

Qx(t)=Pt ft)t Qt ft) =Pj(f) + 
j-1 
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By solving ~qs.fZ.14) we can find successively all the matrices 

T 
c(d) * 

J =-?;- Q!p’ (t) dt, #’ (t) = i [Qr’ (1) - Cld’] dt t 
0 

where the matrices Sjcnd) are found from the equations 

S'"d"=:hoS~'-SSf"d'A,+Qjnd'(t) (j= i, 2,...,N),- t 

As a result, for any N, system (2.13) splits, up to Q(srN+l), into p subsystems of the 

type 

vk’ =I: h@kE + +C,k + . . . + E$.?+k + 0 (81N+‘)l Vk 

(k = 1, 2, . . ., P), 

where c,, are constant matrices. 
If the matrix Clk is reduced to diagonal form, the required result is obtained by means 

of the transformation 

vx:=(E+ SF sk)wk (k=l,2,...,p) k=: ‘k 1 

If C,kis reduced to the Jordan form, on introducing new fractional powers of e,, we can 
make another step aftertransformation (2.ll)and repeat the above arguments. We assume that, 
in each block, at some finite step (which may be distinct for distinct blocks), the correspond- 
ing matrix has a simple spectrum. In view of this, we can assert: 

Theorem 2. Let the matrix A,in system (2.1) have multiple points in its spectrum, which 
satisfy conditions (2.10). Then, under our assumptions, for sufficiently small e>O, there 
is a non-degenerate T-periodic transformation which reduces system (2.1) to the form (2.41, 
where the parameter s may be different. 

In the resonant case, when, for certain fixed j, k, q, wemay have 

a,j - ho, = i2nqiT, 

the matrix A, has to be written as &= No + i& where the spectrum of the matrix N,, satisfies 
condition (2.2), while 

R ,, = diag {2nq,lT, . . ., Znq,lT) 

(4) = 0, +I, j, 2, . .; j = 1, 2,. . ., m) 

The replacement x =erp (iR,t)v then reduces system(.21) to the 

where condition (2.2) holds for system (2.15), so that Theorem 1 or 2 can be applied. 

form 

(2.15) 

Note. On comparing our procedure with the well-known methods of analysing equations with 
periodic coefficients, we can observe that thereis in /S/ one of the so-called indirect methods 
of studying stability, based on finding the characteristic exponents a(a), found as "implicit 
functions of E from the equation CD&V)= 0" (/5/, pp.249-291). Our method of special matrix 
transformations /l, 2/ is a "direct" method, whereby a system with an almost constant, and 
moreover, almost diagonal matrix , can be found after relatively simple transformations. In a 
sense, our procedure can be regarded as an asymptotic analogue of the Floquet-Lyapunov theorem 
on the reducibility of systems of ordinary differential equations. 

3. Analysis of the stability conditions for stationary rotations of a rigid 
body. Let us apply the above method to Eq.(1.6). By (2.7), in the non-resonant case Eq. 
(1.6) transforms to 

4“ = la, + EAZ + 0 (E?lY $3.1) 

Consequently, for a rigid body with an oblate ellipsoid of inertia (I,> I,), the trivial 
solution is asymptotically stable for sufficiently small E and Qf20. If the ellipsoid 
of inertia is prolate (Z,<Ir), it follows from (3.1) that the stationary rotation is unstable. 

Resonance occurs in the system when the frequency of nutational oscillations is close to 
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twice the magnetic field frequency, i.e 

The constant parametercj,in (3.2), 
detuning. Substituting (3.2) into (1.8 

on which the solution depends, will be called the 
, we make the replacement 

x = exp (A&v. 

The variable u satisfies the equation 

v'=s&(t)v; QI(t)=exp(- A,t)A,exp(A,t)= 

II - P (4 + 4 - r(t)exp(- Bid) 

II IPO) exp(i24 r (t) 

System (3.3) belongs to the class of systems (2.1) 
zero root, so that, by Theorem 2, it can be transformed 
to the form 

y' = [EPr + 0 (&*)I y 

with one Jordan cell and a multiple 
by means of the replacement (2.12) 

(3.3) 

(3.4) 

p = (l-xx)~+~Q, Ii o(l- 2X- %)I4 
1 

- o(1 -2x+ %)/4 -P II 

For system (3.4) the characteristic equation is quadratic with complex coefficients, 
dependent on x, %, fir. Its roots lie in the left half-plane when 

Fig.1 

(3.5) 

In space of parameters X,%,%=4~1Z/~2 (for actual bodies 
r/;!<X<w, O< f, O< %), condition (3.5) defines the domain of 
stability (Fig.1). The section of domain (3.5) by the plane %= 
const is an ellipse with centre on the line x=rf2, %= 0. For 
zero detuning, i.e., when 5=0, the semi-axes of the ellipse 
(3.5) are equal respectively to 1/1/z, 2, and, if ' 1, < 1.077 I,, 
it is possible to stablize the rotation of a body with a slightly 
prolate ellipsoid of inertia. The semi-axis in the plane %= 0 
decreases monotonically as the detuning increases and tends 
asymptotically to the valuel/%. In the plane x='lZ the semi-axis 
increases without limit, so that, for sufficiently large values of 
the detuning %, there are no constraints on the ratio 5 of the 
polarization coefficients. Thus, for large detunings, the domain 

of stability (3.5) transforms into the domain obtained in the non-resonant case: 11 C 18 (XC 
I), the ellipsoid of inertia is compressed, andthepolarization coefficients can take any 
values (% is arbitrary). 

Notice that, in /6/, where the motion of a conducting rigid body with resonant interaction 
with an alternating magnetic field was considered , no asymptotically stable stationary mode 
of the body was discovered, and the hypothesis was put forward that it is very unlikely that 
the body will be captured in a resonant rotation. In the present paper, where, as distinct 
from /6/, the polarization tensor can be arbitrary, a domain is found where stable stationary 
modes are possible. 
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BRANCHING AND STABILITY OF PERMANENT ROTATIONS AND RELATIVE EQUILIBRIA 
OF A BODY SUSPENDED FROM A ROD* 

V.N. RUBANOVSKII 

The problem of the motion of a rigid body withatriaxialcentralellipsoid 
of inertia suspended from a fixed point of a weightless non-deformable 
rod whose point of contact with the body lies on the principal central 
axis of inertia, is considered. Sets of all permanent rotations and 
relative equilibria of the body,their branching and sthility, are 
studied. The results are presented in the form of bifurcation diagrams. 
The distribution of permanent rotations (relative equilibria) on these 
diagrams obeys the law of variation of stability when the value of the 
area integration constant (the angular velocity of the translational 
rotation of the body) is fixed. 

The permanent rotations and relative equilibria of a body suspended on a string 
were studied in /l-3/. 

1. Let us considerthemotion of a body suspended on a hinge from a weightless non- 
deformable rod attached to a fixed point 0, with the point of suspension 0 lying on the 
principal central axis of inertia. 

The equations of motion of the body admit of energy and area integrals, and we have the 
following expression /4/ for the changed potential energy of the system: 

W = '/z k*J-’ + Jl 

II=-mg(Zv-a).%, J=x.8.x+m[zX (Iv-aa)]% 

Here k is the constant of the area integral, n is the potential energy due to gravity, 
J is the moment of inertia of thebody about the vertical passing through the point O,,m and 
8 is the mass and central tensor of inertia of the body with diagonal elements J,, J,, J,,x 
and v are unit vectors of the descending vertical and the direction of the string from the 
point 0, to 0, a is the radius vector of the point 0 relative to the centre of mass C of the 
body, and g and 1 are the acceleration due to gravity and the length of the rod. 

We introduce two right rectangular coordinate systems: the system Cx,x,x, rigidly 
attached to the body, whose axes coincide with the principal central axes of inertia, and the 

system O1ulY,Y, rotating with angular velocity 8 = kJ_’ about they, axis directed vertically 
downwards. 

We shall assume that the point 0 at which the rod is joined to the body, lies on the XQ 
axis whose direction coincides with the direction of the vector a. We shall denote by v, 
the projections of the vector v on to the y,(s=1,2,3) axes. Let a,fi,v betheunitvectors 
of the xln x2, x3 axes and a., B,, yd their projections on to the y,axes, and 

n,=c$-l=O, n,=fl2-110, n,=~=-l=o, n,= 

+-I=0 

na9=a.p=0, n,,=fi.y=O, n,,=y.a=O 

(1.1) 
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